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We present a measurement of the Drell-Yan cross section at high dielectron invariant mass using
120 pb�1 of data collected in p�p collisions at

p
s = 1.8 TeV by the D� collaboration during 1992{

96. No deviation from standard model expectations is observed. We use the data to set limits on
the energy scale of quark-electron compositeness with common constituents. The 95% con�dence
level lower limits on the compositeness scale vary between 3.3 TeV and 6.1 TeV depending on the
assumed form of the e�ective contact interaction.

PACS numbers: 12.60.Rc, 13.85.Qk, 13.85.Rm
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In p�p collisions, dielectron pairs can be produced
through the Drell-Yan process [1] over a large range of
available partonic center of mass energies. In the stan-
dard model (SM), the process occurs to �rst order via
quark-antiquark annihilation into a virtual photon or Z
boson. If quarks and leptons are composite with common
constituents, the interaction of these constituents would
likely be manifested through an e�ective four fermion
contact interaction at energies below the compositeness
scale. We consider a general contact-interaction La-
grangian [2,3] of the form

L =
4�

�2
[�LL(�qL

�qL)(�eL�eL) + �LR(�qL
�qL)(�eR�eR)

+ �RL(�qR
�qR)(�eL�eL) + �RR(�qR

�qR)(�eR�eR)]

where q=(u; d) represents the �rst generation quarks, � is
the compositeness scale, �ij = �1, and L (R) denotes the
left (right) helicity projection. The addition of this con-
tact term to the SM Lagrangian modi�es the dominant
=Z boson matrix element, with the strongest e�ects at
high dielectron invariant mass. Composite quarks and
electrons have been proposed as a possible explanation
of the high-Q2 anomaly at HERA [4]. Previous results
on quark-electron compositeness set lower limits on the
energy scale � in the range of 2.5{5.2 TeV [5] and 2.1{
3.5 TeV [6]. In this Letter, we report the measurement
of the Drell-Yan cross section at high mass and set the
most stringent limits to date on the quark-electron com-
positeness scale.
The results presented here used 120 pb�1 of data col-

lected in p�p collisions at
p
s = 1:8 TeV by the D�

detector [7] during the 1992{1996 run at the Fermilab
Tevatron. The detector consists of a tracking system, a
highly linear, granular and stable uranium/liquid-argon
calorimeter, and a muon spectrometer. Electron can-
didates are accepted in the pseudorapidity range of j�j
< 1:1 for electrons detected in the central calorimeter
(CC) and 1:5 < j�j < 2:5 for electrons detected in the for-
ward calorimeters (EC), where � = �log tan(�=2) and �
is the polar angle with respect to the beam axis. CC elec-
trons within 0.0098 radians in azimuth of any calorimeter
module edge are removed to ensure uniform calorimeter
response. At least two electrons are required to have
transverse energy ET > 20 GeV at the trigger level and
ET > 25 GeV o�ine. The two highest-ET electrons in
the event are selected for analysis.
O�ine, a \loose" electron must satisfy three require-

ments: (i) the electron must deposit at least 95%
of its energy in the 21 X0 electromagnetic calorime-
ter, (ii) the transverse and longitudinal shower shapes
must be consistent with those expected for an electron,
and (iii) the electron must be isolated in energy in a

cone of radius R =
p
��2 +��2 = 0:4, such that

Etot(R=0:4)�EEM (R=0:2)
EEM (R=0:2) < 0:15, where Etot and EEM are

the total and EM calorimeter energies respectively. A
\tight" electron is additionally required to have a match-
ing track in the drift chambers. In this analysis, any
forward electron is required to be \tight" and at least
one member of each electron pair must be \tight."
The detector acceptance for dielectron events is de�ned

as the fraction of produced events in which both electrons
pass our kinematic and �ducial cuts. To calculate the ac-
ceptance, Drell-Yan events are generated using PYTHIA

[8]. The parton showering parameters in PYTHIA were
tuned for good kinematic modeling of the data using the
distribution of the Z boson transverse momentum (pT )
observed at D�. The detector response is simulated using
a parameterized Monte Carlo program [9]. The sampling
and noise terms in the electron energy resolution are de-
rived from test beam data and the calorimeter pedestal
distribution in W ! e� collider data, respectively. The
constant term is constrained by the observed width of
the Z ! ee mass peak. The known Z boson mass is used
to set the electromagnetic energy scale.
The acceptance, calculated using the Drell-Yan Monte

Carlo model and MRS(A0) [10] parton distribution func-
tions, is � 53% and does not depend strongly on mass
above mee = 250 GeV/c2. This makes the analysis rel-
atively model-independent. The systematic uncertainty
on the acceptance due to the production model is esti-
mated to be 1:5%. The e�ect of energy smearing, in-
cluded in the acceptance calculation, is small because
the energy resolution (15%/

p
E (GeV) � 1%) is much

smaller than the bin width at high mass.
The electron trigger and o�ine selection e�ciency is

determined using Z ! ee data. One of the electrons
is required to satisfy the \tight" selection criteria. The
second electron then provides an unbiased sample to
measure the e�ciencies. Background subtraction is per-
formed using the sidebands of the Z boson mass dis-
tribution. The trigger is found to be fully e�cient for
high mass dielectrons (mee > 120 GeV/c2). The single-
electron e�ciency for the CC \loose" selection criteria
is (92.9�0.7)% and for the \tight" selection criteria is
(74.1�0.6)%. The e�ciency for EC \tight" selection cri-
teria is (52.6�1.0)%. The dependence of dielectron se-
lection e�ciency on invariant mass was studied using a
detailed GEANT-based Monte Carlo [11] simulation of di-
electron events. The Monte Carlo events were embedded
in unbiased data events to simulate the e�ects of multiple
interactions and detector noise, and then reconstructed.
No dependence of the selection e�ciency on dielectron
mass was found.
The most important sources of background to p�p !

ee + X are QCD multijet events with two jets misiden-
ti�ed as electrons and direct-photon events where both
the photon and a jet are misidenti�ed as electrons. Jets
with a leading �0 or � may produce an isolated and ener-
getic photon that passes the \loose" or \tight" electron
selection criteria, depending on the presence of an associ-
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FIG. 1. Mass distribution dN=dm for dielectron data. The
corresponding distributions for expectations from Drell-Yan
and Drell-Yan + contact term process (both including all
other backgrounds) are also shown. The e�ects of kinematic
and �ducial cuts, dielectron identi�cation e�ciency, and de-
tector smearing are folded into the predictions, and the pre-
dictions are normalized to the total luminosity. Error bars
indicate only statistical uncertainties. There are no events
with mee > 400 GeV=c2.

ated track. Using multijet and photon-jet data samples,
the probability for misidentifying a jet as an electron is
measured as a function of jet ET . A CC jet with ET

= 100 GeV is misidenti�ed as a \tight" electron with a
probability of 0.8�10�3 and as a \loose" electron with a
probability of 1.8�10�3. An EC jet with ET = 100 GeV
is misidenti�ed as a \tight" electron with a probability
of 1.0�10�3. The 25% uncertainty in these probabili-
ties is dominated by the uncertainty in the direct-photon
fraction of the fake electron sample. Estimated back-
grounds to the dielectron sample from multijet, photon-
jet, and W+jet sources were calculated independently as
a function of mass by weighting the total number of di-
jet, photon-jet, andW+jet pairs in any given mass bin by
the appropriate misidenti�cation probability and sample
luminosities.
In addition to misidenti�cation backgrounds, other

high pT processes contribute to dielectron �nal states.
We use PYTHIA Monte Carlo events, passed through
the parameterized detector simulation, to estimate these
backgrounds. Since electrons and photons will pass the
\loose" electron selection cuts, we evaluated �ve possible
background processes, W ! e�, Z ! ee, t�t! eeX,
WW ! eeX and �=Z ! �� ! eeX, and found them
to contribute less than 10% of the total background.
Figure 1 displays the di�erential mass distribution

dN=dm for dielectron data. It also shows the expecta-
tion from the Drell-Yan process, obtained by processing

TABLE I. The observed number of events N , total detec-
tion e�ciency, expected total background, and the dielectron
production cross section in the given mass bins. In the three
highest mass bins, we quote the 95% (84%) CL upper limits
on the cross section. The last column gives the value ~m of
mass at which, for a NNLO SM calculation, d�th=dm equals
�th=�m. Here �th denotes the total theoretical cross section
in the bin and �m denotes the bin width.

mee bin N Total Expected � ~m
(GeV=c2) E�ciency Background (pb) (GeV=c2)

120{160 136 0.32�0.01 64.0�10.0 1:93+0:43�0:44 135
160{200 38 0.34�0.01 22.0�3.5 0:49+0:16�0:18 177
200{240 18 0.36�0.01 6.34�0.96 0:28+0:09�0:10 218
240{290 7 0.37�0.01 3.61�0.56 0:066+0:052�0:058 262
290{340 2 0.38�0.01 1.37�0.23 0:033+0:032�0:030 312
340{400 4 0.39�0.01 0.75�0.13 0:057+0:042�0:047 367
400{500 0 0.40�0.01 0.23�0.04 <0.063 (0.039) 443
500{600 0 0.41�0.01 0.06�0.02 <0.060 (0.037) 544
600{1000 0 0.42�0.01 0.03�0.01 <0.058 (0.035) 729

PYTHIA-generated events through the parametric detec-
tor simulation, and includes contributions from summed
background, which is also shown separately. Our data
show no signi�cant discrepancy from SM expectations.
The measurement of the inclusive dielectron cross sec-

tion is performed in independent mass bins using a
Bayesian [12] technique. In each bin k, we determine
the posterior probability density P (�kjNk

o ) for the cross
section �k, given the observed number of events Nk

o . The
expected number of events in the kth mass bin is given by
Nk = bk+L�k�k, where bk is the expected background, L
is the luminosity, �k is the total signal e�ciency (includ-
ing acceptance, selection e�ciency, and smearing correc-
tion), and �k is the total cross section in that bin. The
posterior probability density for the cross section �k is

P (�kjNk
o ) =

1

A

Z
db dL d�

e�N
k

NkN
k

o

Nk
o !

P (bk;L; �k)P (�k);

where A is the normalization. The prior probability den-
sity P (b;L; �) is taken to be a product of independent
Gaussian distributions in b, L and �, with the measured
value in each bin de�ning the mean and the uncertainty
de�ning the width. The prior distribution P (�k) in any
bin is chosen to be uniform in �. The measured value
of the cross section for each bin is taken to be the mode
of the posterior probability density (maximum likelihood
estimate). The interval of minimum width containing
68% of the area de�nes the uncertainty on the cross sec-
tion. Table I shows the observed number of events, the
product of detector acceptance and e�ciency, and the
expected background for dielectron events. The second-
to-last column shows the measured dielectron cross sec-
tion and the associated uncertainty, dominated by event
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TABLE II. 95% CL lower limit on energy scale of compositeness � in TeV for di�erent contact interaction models. The
superscript on � indicates the sign of �ij , which governs the nature of the interference (negative sign for constructive interference)
between the contact interaction and the SM Lagrangian.

LL LR RL RR LL+RR LR+RL LL � LR RL�RR V V AA

�+ (TeV) 3.3 3.4 3.3 3.3 4.2 3.9 3.9 4.0 4.9 4.7
�� (TeV) 4.2 3.6 3.7 4.0 5.1 4.4 4.5 4.3 6.1 5.5

statistics in the high-mass bins. In bins with no ob-
served events, we quote the 95% and 84% con�dence
level (CL) upper limits on the cross section, de�ned byR �
0 P (�0jNo)d�

0 = 0:95 (0.84). The measured di�erential
cross sections d�=dm are compared with predictions of
a next-to-next-to-leading order (NNLO) SM calculation
[13] in Fig. 2. We �nd no signi�cant deviation between
the measurement and theory.

FIG. 2. The di�erential inclusive dielectron production
cross section. The 68% uncertainty intervals are shown for
the data points. The last three bins, which have no events,
show the 84% CL upper limit on the cross section correspond-
ing to the upper end of the error bars in the preceeding bins.
Also shown is the prediction of the SM at NNLO.

To set limits on the compositeness scale �, we calcu-
late the cross section for the Drell-Yan + contact term
process by including terms from the contact interaction
Lagrangian [2,3] with the SM Lagrangian. We correct the
leading order (LO) cross section calculation for higher or-
der QCD e�ects using a mass-dependent K-factor. The
K-factor is de�ned as the ratio of the NNLO Drell-Yan
cross section calculation from Ref. [13] to our calculated
LO Drell-Yan cross section. Limits are set independently
for each separate channel of the contact-interaction La-
grangian: LL, LR, RL and RR, and �ij = �1. The
�rst letter indicates the helicity of the quark current

and the second letter indicates the helicity of the lep-
ton current. These terms are strongly constrained by
atomic parity-violation measurements (APV) [14], im-
plying � > 10 TeV. However, parity-conserving or other
symmetric combinations of these terms, such as LL+RR,
LR+RL [15,16], LL�LR, RL�RR [17], vector-vector
(V V = LL + RR + LR + RL) [18], and axial vector -
axial vector (AA = LL+RR�LR�RL) [18,19], are not
constrained by APV. Our measurements impose strong
constraints on all of these models.
The limit on the quark-electron compositeness scale

is calculated using a Bayesian analysis of the shape of
the mass distribution of events. The expected number
of events in the kth mass bin is denoted by Nk

� = bk +
L�k�k�, where �k� is the predicted cross section including
compositeness (� ! 1 gives the SM cross section). To
reduce the normalization uncertainty in the theory for the
limit-setting analysis, the SM prediction for the number
of events in the Z boson mass bin is normalized to the
observed number of events. The posterior probability
density for the compositeness scale �, given the observed
data distribution (D), is given by

P (�jD) = 1

A

Z
db d�

nY
k=1

2
4e�N

k

�Nk
�
Nk

0

Nk
0 !

P (bk; �k)

3
5P (�):

The bin-to-bin correlations in the value and the uncer-
tainty on the background are taken into account. The
prior distribution P (�) is uniform in 1/�2, to represent
a prior approximately uniform in cross section. The re-
sulting posterior density P (�jD) peaks at 1=�2 = 0 and
falls monotonically with increasing 1/�2. The 95% CL
lower limit is de�ned by

R1
�

P (�0jD)d�0 = 0:95. The
limits for various helicity options are shown in Table II.
In conclusion, we have measured the di�erential cross

section for dielectron pair production at high dielectron
mass. We �nd no signi�cant deviation from the SM. We
have used the data to set limits on the quark-electron
compositeness scale in the context of an e�ective contact
interaction. In the chiral channels (i.e., either the quark
or the lepton current is not vector or axial-vector), the
95% CL lower limits on �+ vary between 3.3 and 4.2
TeV, and limits on �� vary between 3.6 and 5.1 TeV.
The V V and AA limits are more stringent, varying be-
tween 4.7 and 4.9 TeV for �+ and 5.5 and 6.1 TeV for
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��. These are the best limits to date on quark-electron
compositeness and are fairly independent of the helicity
structure of the contact interaction.
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